
CSS332: Microcontrollers and Applications

Midterm Mock Exam

curated by The Peanuts

Name.ID.Section.Seat No.

Conditions: Semi-Closed Book

Directions:

1. This exam has 16 pages (including this page).

2. If you finish early, stare at your paper like it’s a masterpiece.

3. Write your name clearly, even microcontrollers need proper initializa-
tion.

4. Reading the problem is optional but highly recommended.

5. Answers must be written in a structured format. Random noise (scrib-
bles) will not be processed correctly.

6. Going to the toilet may deduct your score, hold it like your grades
depend on it.

For solution, click here.

https://npwitk.com/mock-exam/solution/css332_gt.pdf

Problem 1

Answer the following questions:

Convert binary 1101 1011 to decimal

Convert decimal 123 to binary and hexadecimal

Convert hexadecimal 0xA7 to binary and decimal

Problem 2

For the addition of 8-bit unsigned numbers: 0xF7 + 0x19, determine:

a) The result in hexadecimal

b) The state of the Carry (C) flag

c) The state of the Zero (Z) flag

d) The state of the Half-carry (H) flag

For the subtraction of signed 8-bit numbers: 0x65 - 0x8A, determine:

a) The result in hexadecimal

b) The state of the Negative (N) flag

c) The state of the Overflow (V) flag

d) Is this result correct from a signed arithmetic perspective? Explain.

Problem 3

Consider the following AVR assembly program:

.ORG 0

LDI R16, HIGH(RAMEND)

OUT SPH, R16

LDI R16, LOW(RAMEND)

OUT SPL, R16

LDI R20, 0x5A

LDI R21, 0x3F

LDI R22, 0x81

PUSH R20

PUSH R21

PUSH R22

POP R23

POP R24

POP R25

a) What values will be stored in registers R23, R24, and R25 after executing
this program?

b) Show the values stored and the stack pointer position each time at three
points: after all three PUSH instructions, after the first POP instruction,
and after all three POP instructions.

0x08FF

0x08FE

0x08FD

0x08FC

0x08FB

0x08FF

0x08FE

0x08FD

0x08FC

0x08FB

0x08FF

0x08FE

0x08FD

0x08FC

0x08FB

c) What would happen if the PUSH and POP instructions were executed
without initializing the stack pointer (the first four instructions)? Ex-
plain.

Problem 4

Calculate the total time delay (in milliseconds) for the delay sub-
routine, assuming the microcontroller is running at 16MHz:

DELAY:

LDI R20, 160

L1:

LDI R21, 200

L2:

LDI R22, 250

L3:

NOP

NOP

DEC R22

BRNE L3

DEC R21

BRNE L2

DEC R20

BRNE L1

RET

Show your calculations step by step, counting instruction cycles accurately.

Problem 5

The circuit below shows anArduino UNO connected to two switches
and two LEDs:

Write a complete assembly program that implements the following function-
ality:

• Correctly configures the I/O pins (PB0, PB1 as inputs with pull-up
resistors; PD4, PD5 as outputs)

• When Switch 1 is pressed (closed state, LOW signal), LED 1 turns ON

• When Switch 1 is not pressed (open state, HIGH signal), LED 1 turns
OFF

• Similarly, when Switch 2 is pressed (closed state, LOW signal), LED 2
turns ON

• When Switch 2 is not pressed (open state, HIGH signal), LED 2 turns
OFF

This page is intentionally left blank for writing code

Problem 6

Using the 7-segment display pinout provided in the appendix:

Write a complete assembly program that displays your student ID one digit
at a time on a common cathode 7-segment display connected to PORTD.

For example, if your student ID is 6622772422, the program should display
each digit sequentially with an approximately 2-second delay between digits
and loop continuously.

(For the delay subroutine, assume the microcontroller is running at 8MHz
and show your calculation of how many cycles your delay loop requires.)

Your student ID has 10 digits. If you store these digits in program memory
using the .DB directive, explain whether or not the padding effect will occur.
Would you need to add an extra byte? Why or why not?

This page is intentionally left blank for writing code

Problem 7

Write a complete assembly program using macros to create a LED sequence
on 8 LEDs connected to PORTD (PD0-PD7). The LEDs should light up in
a pattern where a single LED appears to move back and forth across the row
of LEDs. Each position change should have approximately 0.5 seconds delay.
(assuming the microcontroller is running at 16MHz)

Use the following macros in your program:

.MACRO DELAY

LDI R20, @0

L1: LDI R21, @1

L2: LDI R22, @2

L3: NOP

NOP

DEC R22

BRNE L3

DEC R21

BRNE L2

DEC R20

BRNE L1

.ENDMACRO

Draw a complete circuit diagram showing the connection of 8 LEDs to
PORTD (PD0-PD7) of the Arduino Uno board as described in the problem.
Your diagram should include:

1. Arduino Uno board

2. Eight LEDs connected to the pins corresponding to PD0 through PD7

3. Current-limiting resistors for each LED (specify resistance value)

4. Power connections if needed

Note: Arrange the LEDs in a horizontal row to match the sequential pattern
implemented in your assembly program.

Hint: Use LSL/LSR to shift a single ‘1’ bit left/right to move the LED
position, and implement a direction flag (0 or 1) that changes when the
LED reaches either PD0 or PD7 to create the back-and-forth effect. Use
DELAY X, 200, 250, Calculate X to get approximately 0.5 seconds delay

Appendix

Arduino UNO Pin Layout

13

12

11

10

9

8

7

6

5

4

3

2

L

5V

A0

A
N

A
L
O

G
 IN

AREF

1

GND

T
X

R
X

RESET

3V3

A1

A2

A3

A4

A5

VIN

GND

GND

D
IG

IT
A

L
 (P

W
M

=
)

A
rd

u
in

o
T

M

IOREF

ICSP

IC
S

P
2

O
N

P
O

W
E

R

0

1TX0

RX0

R
E

S
E

T

7-Segment Display Pinout

Number g f e d c b a

0 0 1 1 1 1 1 1
1 0 0 0 0 1 1 0
2 1 0 1 1 0 1 1
3 1 0 0 1 1 1 1
4 1 1 0 0 1 1 0
5 1 1 0 1 1 0 1
6 1 1 1 1 1 0 1
7 0 0 0 0 0 1 1
8 1 1 1 1 1 1 1
9 1 1 0 1 1 1 1

MnemonicsOperandsDescription Operation Flags #Clock

Arithmetic and Logic Instructions

ADD Rd, Rr Add two registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with carry Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl, K Add immediate to word Rdh:Rdl ← Rdh:Rdl + KZ,C,N,V,S 2

SUB Rd, Rr Subtract registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract immediate Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with carry Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with carry imm. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl, K Subtract imm. from wordRdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Rd ← Rd × Rr Z,N,V 1

ANDI Rd, K AND with immediate Rd ← Rd × K Z,N,V 1

OR Rd, Rr Logical OR Rd ← Rd ∨ Rr Z,N,V 1

ORI Rd, K OR with immediate Rd ← Rd ∨ K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s complement Rd ← 0xFF - Rd Z,C,N,V 1

NEG Rd Two’s complement Rd ← 0x00 - Rd Z,C,N,V,H 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd - 1 Z,N,V 1

Branch Instructions

RJMP k Relative jump PC ← PC + k + 1 None 2

JMP k Direct jump PC ← k None 3

RCALL k Relative call PC ← PC + k + 1 None 3

CALL k Direct call PC ← k None 4

RET Return from subroutine PC ← STACK None 4

