CSS332: Microcontrollers and Applications
Final Mock Exam

curated by The Peanuts

Conditions: Semi-Closed Book (A4 Both Sides)
Directions:

1. This exam has 15 pages (including this page).

2. Calculators (Casio 991 Series) are allowed.

3. Write your name clearly at the top of each page.

4. You may cry silently. Loud sobs will be graded as participation.

5. If you finish early, triple-check your work.

6. Do not cheat.

7. Good luck! May the bugs forever stay in your code and not in your
answers.

For solution, click here.

https://npwitk.com/mock-exam/solution/css332_final_yup.pdf

Problem 1

5V Arduino UNO
10K
PB1
PD5 PBO
LEDO LED1
SwW \o P>
4 If press, 330 330
If not press, SWis closed.
SW is open.

You need to write an Assembly program to implement the following tasks:

e Task 1: The microcontroller monitors the status of the switch SW: if
SW is pressed, LEDO turns on; if not pressed, LEDO turns off.

e Task 2: The microcontroller keeps turning LED1 on and off every 0.5
seconds using the Timer(Q overflow interrupt.

The Timer0 should be set up in normal mode with a pre-scaling factor of
1024. Each Timer0 overflow will generate an interrupt every 4000 us.

Part A: Timer Calculations

a) What value should be loaded into TCNTO to generate an overflow inter-
rupt every 4000 pus with a 16 MHz clock and a prescaler of 10247

b) How many TimerO overflow interrupts are required to achieve the 0.5-
second toggle for LED1?

Part B: Complete the Assembly Program

Complete the following Assembly program by filling in the missing parts to
implement both tasks.

1 .0ORG 0x0 ; Set the origin for the reset vector

2 JMP ________ ; Jump to the main program

3

4« 0RG ________

5 JMVP ________ ; Jump to the TimerO Overflow Interrupt Service
Routine

6

7 .0RG 0x100 ; Start of the main program

s MAIN:

9 LDI R16, HIGH(RAMEND)

10 QUT SPH, R16

11 LDI R16, LOW(RAMEND)

12 OUT SPL, R16

13

14 CALL PIN_SETUP ; Call subroutine to set up pins

15

16 LDI R16, ________ ; Enable TimerO overflow interrupt

17 STS TIMSKO, R16 ; Store in Timer Interrupt Mask Register

18 ; Enable global interrupts

19

20 CALL TIMERO_SETUP ; Call subroutine to set up TimerO

21 LDI R21, ________ ; Load counter value for 0.5-second

toggling

22

23 LOOP:

24 ________ PIND, 5 ; Check if switch is pressed

25 RJMP L_OFF ; If switch is not pressed, jump to turn
LEDO off

26 RJMP L_ON ; Otherwise, turn LEDO on

27

28 L_OFF:

20 ________ PORTB, O ; Turn LEDO off

30 RJMP LOOP ; Loop back

31

32 L_ON:

33 PORTB, O ; Turn LEDO on

38

39

40

41

42

43

44

45

48

49

50

51

52

53

54

55

58

59

60

61

62

63

64

65

67

68

69

RJMP LOOP

; Subroutine to configure

PIN_SETUP:

SBI DDRB, O

CBI PORTB, O
SBI DDRB, 1

CBI PORTB, 1
CBI DDRD, 5

SBI PORTD, 5
RET

; Subroutine to configure

TIMERO_SETUP:

LDI R20, ________
OUT TCNTO, R20
LDI R20, ________
OUT TCCROA, R20
LDI R20,

TimerO (TCCROB = 7?)

0UT TCCROB, R20
RET

.ORG 0x200 ; Start of TimerO Overflow Interrupt Service Routine

TO_OV_ISR:
DEC R21
BRNE HERE
LDI R21, ________
IN R17, PORTB
LDI R18,

OUT PORTB, R17

HERE:
LDI R18, ________
OUT TCNTO, R18

b

b

’

)

b

’

b

Loop back
I/0 pins

Set PBO as output (LEDO)
Ensure LEDO is off initially
Set PB1 as output (LED1)
Ensure LED1 is off initially
Set PD5 as input (Switch)
Enable pull-up resistor on PD5
Return from subroutine

TimerO

Load initial value for TimerO

Set TimerO initial value

Set normal mode (TCCROA = 7)
Store in Timer Control Register A
Set pre-scaler to 1024 and start

Store in Timer Control Register B
Return from subroutine

Decrement overflow counter

If not zero, skip the toggling part
Reset counter for 0.5-second cycle
Read current PORTB state

Load mask for PB1 (LED1)

Toggle PB1 state

Output new state to PORTB

Reload initial TimerO value
Store in TimerO counter register
Return from interrupt

Problem 2

Arduino UNO
SW2 PC2 PB2
SW1 PD3 (INT1) PB1
SWO PD4 PBO

LEDO ¥ LED1 ¥ LED2
330 330 330

You need to write a C program to implement the following tasks:

e Task 1: The microcontroller monitors the status of switch SWO0: if SW0
is pressed, LEDO turns on; if not pressed, LEDO turns off.

e Task 2: The microcontroller monitors the status of switch SW1 (con-
nected to INT1): if SW1 is pressed, LED1 toggles (on — off or off —
on). The INT1 should be configured for rising-edge trigger.

e Task 3: The microcontroller monitors the status of switch SW2 (con-
nected to PC2): LED2 toggles only after SW2 has been pressed and
released 4 times (using the pin change interrupt).

Part A: Interrupt Configuration

a) For INT1 (external interrupt) with rising-edge trigger, what values should
be configured for the following registers?

EIMSK =
EICRA =

b) For the pin change interrupt on PC2, what values should be configured
for the following registers?

PCICR =

PCMSKO =
PCMSK1 =
PCMSK2 =

¢) To make LED2 toggle only after 4 button presses on SW2, what initial
value should variable z be set to? Explain your answer.

Part B: Complete the C Program

Complete the following C program to implement all three tasks. Fill in the
blanks with appropriate code.

1 #include <avr/io.h>

2 #include <avr/interrupt.h>

3

4+ unsigned char z = ___; // Initial value for counting SW2 presses

—_

6 void PIN_SETUP() {

7 // Configure LED outputs

8 DDRB |= (1<<0); // Set PBO as output for LEDO

9 PORTB &= ~(1<<0); // Set PBO initial state to low
10 DDRB |= (1<<1); // Set PB1 as output for LED1

11 PORTB &= ~(1<<1); // Set PB1 initial state to low
12 DDRB |= (1<<2); // Set PB2 as output for LED2

13 PORTB &= ~(1<<2); // Set PB2 initial state to low
14

15 // Configure switch inputs with pull-up resistors
16 DDRD &= ~(1<<4); // Set PD4 as input for SWO

17 PORTD |= (1<<4); // Enable pull-up for PD4

18 DDRD &= ~(1<<3); // Set PD3 as input for SWi (INT1)
19 PORTD |= (1<<3); // Enable pull-up for PD3

20 DDRC &= ~(1<<2); // Set PC2 as input for SW2

21 PORTC |= (1<<2); // Enable pull-up for PC2

22 F

23
24 int main() {
25 PIN_SETUP();

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

// Configure INT1 for rising edge trigger
EIMSK = ; // Enable INT1

EICRA = ; // Set for rising edge

// Configure Pin Change Interrupt for PC2

PCICR = ; // Enable PORTC pin change interrupts

= ; // Enable interrupt for PC2

sei(); // Enable global interrupts

while (1) {

_____________) { // Check if SWO is pressed
PORTB |= (1<<0); // Turn on LEDO

} else {
PORTB &= ~(1<<0); // Turn off LEDO

}

}

return O;
}
// ISR for INT1 (Task 2)
ISR(_____________) {

________________ ; // Toggle LED1
}
// ISR for Pin Change Interrupt (Task 3)
ISR(_____________) {

z——; // Decrement counter

___________ ; // Toggle LED2

z = ; // Reset counter to initial value

Problem 3

In this exercise, you will implement serial communication between two Ar-
duino UNO boards. Board 1 will have two switches connected, while Board
2 will have two LEDs connected. When a switch on Board 1 is pressed, it
will send a command through UART to toggle the corresponding LED on

Board 2.
Transmitter Receiver
TX (PD1) ><: TX (PD1)
SW1 PD3 RX (PDO) RX (PDO) PB1
SWO0 PD2 GND GND PBO
LEDO V LED1
330 330

Part A: Board 1 - Transmitter

Complete the following C program for Board 1, which will monitor the switch
states and send commands to Board 2 when a switch is pressed:

10

11

12

13

14

15

16

17

#include <avr/io.h>
#define F_CPU 16000000UL
#include <util/delay.h>

// Function to initialize UART
void usart_init(void) {

UCSROB = (1<<________) // Enable USART transmitter
UCSROC = (1<<UCSZ01) | (1<<UCSZ00); // Async, 8 bits
UBRROL = ________ ; // Baud rate = 9600

void pin_setup(void) {
DDRD &= ~(1<<2); // Set PD2 as input (Switch 0)
PORTD |= (1<<2); // Enable pull-up for Switch O
DDRD &= ~(1<<3); // Set PD3 as input (Switch 1)
PORTD |= (1<<3); // Enable pull-up for Switch 1

21

22

23

24

25

26

27

28

30

31

32

33

34

36

37

38

39

40

41

42

43

45

// Function to send a character over UART

void usart_send(unsigned char data) {
while (!'(________)); // Wait until UDRO is empty
UDRO = data; // Send data

int main(void) {
pin_setup();
usart_init();

while(1) {
// Check if Switch O is pressed (PD2 is LOW)
if) Ao

_delay_ms(200) ;

_delay_ms(50); // Small polling delay

return O;

Part B: Board 2 - Receiver

Complete the following C program for Board 2, which will receive commands
from Board 1 and toggle the corresponding LEDs:

1 void usart_init(void) {

2 UCSROB = (1<<________) // Enable USART receiver
3 UCSROC = (1<<UCSZO01) | (1<<UCSZ00); // Async, 8 bits
4 UBRROL = ________ ; // Baud rate = 9600

5

6

7 void pin_setup(void) {

8 DDRB |= (1<<0); // Set PBO as output (LEDO)

9 PORTB &= ~(1<<0); // Set LEDO initial state to OFF
10 DDRB |= (1<<1); // Set PB1 as output (LED1)

1 PORTB &= ~(1<<1); // Set LED1 initial state to OFF
12}

13

14 int main(void) {

15 unsigned char received_data;

16 pin_setup();

17 usart_init();

18

19 while(1) {

20 // Wait until data is received

21 while (______ _ _______); // Check if data is available
22

23 // Read the received data

24 received_data = ________ ;

25

26 // Process received commands

27 if (received_data == ‘1’) {

28 ; // Toggle LEDO

29 }

30 else if (received_data == ‘2’) {

31 ; // Toggle LED1

32 +

33 }

34 return O;

35 F

Part C: Questions

a) What value should be loaded into UBRROL to achieve a baud rate of 9600
with a 16 MHz clock? Show your calculation.

b) What command (character) should be sent from Board 1 when Switch 0
is pressed to toggle LEDO on Board 27

¢) What command (character) should be sent from Board 1 when Switch 1
is pressed to toggle LED1 on Board 27

d) Which pins must be disconnected before uploading code to the Arduino
boards? Explain why this is necessary.

Problem 4

Potentiometer Arduino UNO
—o— —— b5V

PB2

ADCT PB1

@3?;}7 ADCO PO

oge 0d3a1
oge Laan
0€e ¢aIal

You need to write a C program to implement a voltage comparator using
two analog inputs on the microcontroller. The circuit consists of two poten-
tiometers connected to ADCO and ADCI1 pins, with three LEDs connected
to pins PB0, PB1, and PB2.

Write a complete C program that performs the following tasks:

1. Read the voltage values from two potentiometers connected to ADCO
and ADC1 pins.

2. Compare the two voltage values and control LEDs based on these con-
ditions:

(a) If voltage at ADCO > voltage at ADC1, turn on LED1 (PB0) and
turn off other LEDs.

(b) If voltage at ADCO < voltage at ADC1, turn on LED2 (PB1) and
turn off other LEDs.

(c) If voltage at ADCO = voltage at ADC1, turn on LED3 (PB2) and
turn off other LEDs.

Hint: You may need to configure two separate ADC channels in your pro-
gram. Consider using a function to read the ADC value from a specific
channel.

This page is intentionally left blank for writing code

Problem 5

In this problem, you will implement the functionality from Problems 1-4

using Arduino programming language (C++ with Arduino libraries) instead
of AVR C or Assembly. Select ONE of the previous problems (1-4) and
reimplement it using Arduino code.

Random Question Selection:

Visit npwitk.com/css332-random to randomly determine which problem
(1-4) you should implement in Arduino.

https://npwitk.com/css332-random

This page is intentionally left blank for writing code

