
CSS332: Microcontrollers and Applications

Final Mock Exam

curated by The Peanuts

Name ID SectionNo

Conditions: Semi-Closed Book (A4 Both Sides)

Directions:

1. This exam has 15 pages (including this page).

2. Calculators (Casio 991 Series) are allowed.

3. Write your name clearly at the top of each page.

4. You may cry silently. Loud sobs will be graded as participation.

5. If you finish early, triple-check your work.

6. Do not cheat.

7. Good luck! May the bugs forever stay in your code and not in your
answers.

For solution, click here.

https://npwitk.com/mock-exam/solution/css332_final_yup.pdf

Problem 1

You need to write an Assembly program to implement the following tasks:

• Task 1: The microcontroller monitors the status of the switch SW: if
SW is pressed, LED0 turns on; if not pressed, LED0 turns off.

• Task 2: The microcontroller keeps turning LED1 on and off every 0.5
seconds using the Timer0 overflow interrupt.

The Timer0 should be set up in normal mode with a pre-scaling factor of
1024. Each Timer0 overflow will generate an interrupt every 4000 µs.

Part A: Timer Calculations

a) What value should be loaded into TCNT0 to generate an overflow inter-
rupt every 4000 µs with a 16 MHz clock and a prescaler of 1024?

b) How many Timer0 overflow interrupts are required to achieve the 0.5-
second toggle for LED1?

Part B: Complete the Assembly Program

Complete the following Assembly program by filling in the missing parts to
implement both tasks.

1 .ORG 0x0 ; Set the origin for the reset vector

2 JMP ________ ; Jump to the main program

3

4 .ORG ________

5 JMP ________ ; Jump to the Timer0 Overflow Interrupt Service

Routine

6

7 .ORG 0x100 ; Start of the main program

8 MAIN:

9 LDI R16, HIGH(RAMEND)

10 OUT SPH, R16

11 LDI R16, LOW(RAMEND)

12 OUT SPL, R16

13

14 CALL PIN_SETUP ; Call subroutine to set up pins

15

16 LDI R16, ________ ; Enable Timer0 overflow interrupt

17 STS TIMSK0, R16 ; Store in Timer Interrupt Mask Register

18 ________ ; Enable global interrupts

19

20 CALL TIMER0_SETUP ; Call subroutine to set up Timer0

21 LDI R21, ________ ; Load counter value for 0.5-second

toggling

22

23 LOOP:

24 ________ PIND, 5 ; Check if switch is pressed

25 RJMP L_OFF ; If switch is not pressed, jump to turn

LED0 off

26 RJMP L_ON ; Otherwise, turn LED0 on

27

28 L_OFF:

29 ________ PORTB, 0 ; Turn LED0 off

30 RJMP LOOP ; Loop back

31

32 L_ON:

33 ________ PORTB, 0 ; Turn LED0 on

34 RJMP LOOP ; Loop back

35

36 ; Subroutine to configure I/O pins

37 PIN_SETUP:

38 SBI DDRB, 0 ; Set PB0 as output (LED0)

39 CBI PORTB, 0 ; Ensure LED0 is off initially

40 SBI DDRB, 1 ; Set PB1 as output (LED1)

41 CBI PORTB, 1 ; Ensure LED1 is off initially

42 CBI DDRD, 5 ; Set PD5 as input (Switch)

43 SBI PORTD, 5 ; Enable pull-up resistor on PD5

44 RET ; Return from subroutine

45

46 ; Subroutine to configure Timer0

47 TIMER0_SETUP:

48 LDI R20, ________ ; Load initial value for Timer0

49 OUT TCNT0, R20 ; Set Timer0 initial value

50 LDI R20, ________ ; Set normal mode (TCCR0A = ?)

51 OUT TCCR0A, R20 ; Store in Timer Control Register A

52 LDI R20, ________ ; Set pre-scaler to 1024 and start

Timer0 (TCCR0B = ?)

53 OUT TCCR0B, R20 ; Store in Timer Control Register B

54 RET ; Return from subroutine

55

56 .ORG 0x200 ; Start of Timer0 Overflow Interrupt Service Routine

57 T0_OV_ISR:

58 DEC R21 ; Decrement overflow counter

59 BRNE HERE ; If not zero, skip the toggling part

60 LDI R21, ________ ; Reset counter for 0.5-second cycle

61 IN R17, PORTB ; Read current PORTB state

62 LDI R18, ________ ; Load mask for PB1 (LED1)

63 ________ R17, R18 ; Toggle PB1 state

64 OUT PORTB, R17 ; Output new state to PORTB

65

66 HERE:

67 LDI R18, ________ ; Reload initial Timer0 value

68 OUT TCNT0, R18 ; Store in Timer0 counter register

69 ______ ; Return from interrupt

Problem 2

You need to write a C program to implement the following tasks:

• Task 1: The microcontroller monitors the status of switch SW0: if SW0
is pressed, LED0 turns on; if not pressed, LED0 turns off.

• Task 2: The microcontroller monitors the status of switch SW1 (con-
nected to INT1): if SW1 is pressed, LED1 toggles (on → off or off →
on). The INT1 should be configured for rising-edge trigger.

• Task 3: The microcontroller monitors the status of switch SW2 (con-
nected to PC2): LED2 toggles only after SW2 has been pressed and
released 4 times (using the pin change interrupt).

Part A: Interrupt Configuration

a) For INT1 (external interrupt) with rising-edge trigger, what values should
be configured for the following registers?

EIMSK =

EICRA =

b) For the pin change interrupt on PC2, what values should be configured
for the following registers?

PCICR =

PCMSK0 =

PCMSK1 =

PCMSK2 =

c) To make LED2 toggle only after 4 button presses on SW2, what initial
value should variable z be set to? Explain your answer.

Part B: Complete the C Program

Complete the following C program to implement all three tasks. Fill in the
blanks with appropriate code.

1 #include <avr/io.h>

2 #include <avr/interrupt.h>

3

4 unsigned char z = ___; // Initial value for counting SW2 presses

5

6 void PIN_SETUP() {

7 // Configure LED outputs

8 DDRB |= (1<<0); // Set PB0 as output for LED0

9 PORTB &= ~(1<<0); // Set PB0 initial state to low

10 DDRB |= (1<<1); // Set PB1 as output for LED1

11 PORTB &= ~(1<<1); // Set PB1 initial state to low

12 DDRB |= (1<<2); // Set PB2 as output for LED2

13 PORTB &= ~(1<<2); // Set PB2 initial state to low

14

15 // Configure switch inputs with pull-up resistors

16 DDRD &= ~(1<<4); // Set PD4 as input for SW0

17 PORTD |= (1<<4); // Enable pull-up for PD4

18 DDRD &= ~(1<<3); // Set PD3 as input for SW1 (INT1)

19 PORTD |= (1<<3); // Enable pull-up for PD3

20 DDRC &= ~(1<<2); // Set PC2 as input for SW2

21 PORTC |= (1<<2); // Enable pull-up for PC2

22 }

23

24 int main() {

25 PIN_SETUP();

26

27 // Configure INT1 for rising edge trigger

28 EIMSK = ________; // Enable INT1

29 EICRA = ________; // Set for rising edge

30

31 // Configure Pin Change Interrupt for PC2

32 PCICR = ________; // Enable PORTC pin change interrupts

33 ______ = ________; // Enable interrupt for PC2

34

35 sei(); // Enable global interrupts

36

37 while (1) {

38 if (_____________) { // Check if SW0 is pressed

39 PORTB |= (1<<0); // Turn on LED0

40 } else {

41 PORTB &= ~(1<<0); // Turn off LED0

42 }

43 }

44

45 return 0;

46 }

47

48 // ISR for INT1 (Task 2)

49 ISR(_____________) {

50 ________________; // Toggle LED1

51 }

52

53 // ISR for Pin Change Interrupt (Task 3)

54 ISR(_____________) {

55 z--; // Decrement counter

56 if (z == 0) {

57 ___________; // Toggle LED2

58 z = ________; // Reset counter to initial value

59 }

60 }

Problem 3

In this exercise, you will implement serial communication between two Ar-
duino UNO boards. Board 1 will have two switches connected, while Board
2 will have two LEDs connected. When a switch on Board 1 is pressed, it
will send a command through UART to toggle the corresponding LED on
Board 2.

Part A: Board 1 - Transmitter

Complete the following C program for Board 1, which will monitor the switch
states and send commands to Board 2 when a switch is pressed:

1 #include <avr/io.h>

2 #define F_CPU 16000000UL

3 #include <util/delay.h>

4

5 // Function to initialize UART

6 void usart_init(void) {

7 UCSR0B = (1<<________); // Enable USART transmitter

8 UCSR0C = (1<<UCSZ01)|(1<<UCSZ00); // Async, 8 bits

9 UBRR0L = ________; // Baud rate = 9600

10 }

11

12 void pin_setup(void) {

13 DDRD &= ~(1<<2); // Set PD2 as input (Switch 0)

14 PORTD |= (1<<2); // Enable pull-up for Switch 0

15 DDRD &= ~(1<<3); // Set PD3 as input (Switch 1)

16 PORTD |= (1<<3); // Enable pull-up for Switch 1

17 }

18 // Function to send a character over UART

19 void usart_send(unsigned char data) {

20 while (!(________)); // Wait until UDR0 is empty

21 UDR0 = data; // Send data

22 }

23

24 int main(void) {

25 pin_setup();

26 usart_init();

27

28 while(1) {

29 // Check if Switch 0 is pressed (PD2 is LOW)

30 if (_____________________) {

31 usart_send(________); // Send command to toggle LED0

32 _delay_ms(200);

33 }

34

35 // Check if Switch 1 is pressed (PD3 is LOW)

36 if (_____________________) {

37 usart_send(________); // Send command to toggle LED1

38 _delay_ms(200);

39 }

40

41 _delay_ms(50); // Small polling delay

42 }

43

44 return 0;

45 }

Part B: Board 2 - Receiver

Complete the following C program for Board 2, which will receive commands
from Board 1 and toggle the corresponding LEDs:

1 void usart_init(void) {

2 UCSR0B = (1<<________); // Enable USART receiver

3 UCSR0C = (1<<UCSZ01)|(1<<UCSZ00); // Async, 8 bits

4 UBRR0L = ________; // Baud rate = 9600

5 }

6

7 void pin_setup(void) {

8 DDRB |= (1<<0); // Set PB0 as output (LED0)

9 PORTB &= ~(1<<0); // Set LED0 initial state to OFF

10 DDRB |= (1<<1); // Set PB1 as output (LED1)

11 PORTB &= ~(1<<1); // Set LED1 initial state to OFF

12 }

13

14 int main(void) {

15 unsigned char received_data;

16 pin_setup();

17 usart_init();

18

19 while(1) {

20 // Wait until data is received

21 while (_______________); // Check if data is available

22

23 // Read the received data

24 received_data = ________;

25

26 // Process received commands

27 if (received_data == ‘1’) {

28 _______________; // Toggle LED0

29 }

30 else if (received_data == ‘2’) {

31 _______________; // Toggle LED1

32 }

33 }

34 return 0;

35 }

Part C: Questions

a) What value should be loaded into UBRR0L to achieve a baud rate of 9600
with a 16 MHz clock? Show your calculation.

b) What command (character) should be sent from Board 1 when Switch 0
is pressed to toggle LED0 on Board 2?

c) What command (character) should be sent from Board 1 when Switch 1
is pressed to toggle LED1 on Board 2?

d) Which pins must be disconnected before uploading code to the Arduino
boards? Explain why this is necessary.

Problem 4

You need to write a C program to implement a voltage comparator using
two analog inputs on the microcontroller. The circuit consists of two poten-
tiometers connected to ADC0 and ADC1 pins, with three LEDs connected
to pins PB0, PB1, and PB2.

Write a complete C program that performs the following tasks:

1. Read the voltage values from two potentiometers connected to ADC0
and ADC1 pins.

2. Compare the two voltage values and control LEDs based on these con-
ditions:

(a) If voltage at ADC0 > voltage at ADC1, turn on LED1 (PB0) and
turn off other LEDs.

(b) If voltage at ADC0 < voltage at ADC1, turn on LED2 (PB1) and
turn off other LEDs.

(c) If voltage at ADC0 = voltage at ADC1, turn on LED3 (PB2) and
turn off other LEDs.

Hint: You may need to configure two separate ADC channels in your pro-
gram. Consider using a function to read the ADC value from a specific
channel.

This page is intentionally left blank for writing code

Problem 5

In this problem, you will implement the functionality from Problems 1-4
using Arduino programming language (C++ with Arduino libraries) instead
of AVR C or Assembly. Select ONE of the previous problems (1-4) and
reimplement it using Arduino code.

Random Question Selection:

Visit npwitk.com/css332-random to randomly determine which problem
(1-4) you should implement in Arduino.

https://npwitk.com/css332-random

This page is intentionally left blank for writing code

