

# CSS321: Theory of Computation

## Midterm Mock Exam

curated by The Peanuts

Name..... ID..... Section..... Seat No.....

**Conditions:** Open Book

**Directions:**

1. This exam has 16 pages (including this page).
2. You may use a calculator, but it won't help you prove languages are non-regular.
3. Dictionaries are not allowed. Neither is asking the Pumping Lemma for help (it's not here!).
4. Cheating is strictly prohibited.
5. Good luck! May all your states be accepting.

*The solution will never be released, sorry!*

## Question 1

Consider the following statements:

- (a)  $\{a\} \in \{\{a\}, \{b\}\}$
- (b)  $\{a, b\} \subseteq \{\{a\}, \{b\}, a, b\}$
- (c)  $2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- (d) For any sets  $A$  and  $B$ , if  $A \subseteq B$  then  $2^A \subseteq 2^B$
- (e)  $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Which of the above statements are true? \_\_\_\_\_

## Question 2

Let  $A = \{1, 2, 3\}$  and  $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3)\}$  be a relation on  $A$ . Consider the following properties:

- (a)  $R$  is reflexive
- (b)  $R$  is symmetric
- (c)  $R$  is transitive
- (d)  $R$  is antisymmetric
- (e)  $R$  is a partial order

Which of the above properties hold for  $R$ ? \_\_\_\_\_

## Question 3

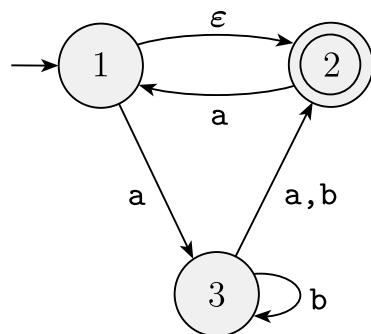
Consider the following statements about regular languages:

- (a)  $L((a \cup b)^*a) = \{w \in \{a, b\}^* \mid w \text{ ends with } a\}$
- (b)  $L(a^*b^*) \cap L(b^*a^*) = \{a^n b^n \mid n \geq 0\}$
- (c) For any regular language  $L$ ,  $L^* = L^+ \cup \{\varepsilon\}$
- (d) The language  $\{a^n b^m \mid n \neq m\}$  is regular
- (e) Every finite language is regular

Which of the above statements are false? \_\_\_\_\_

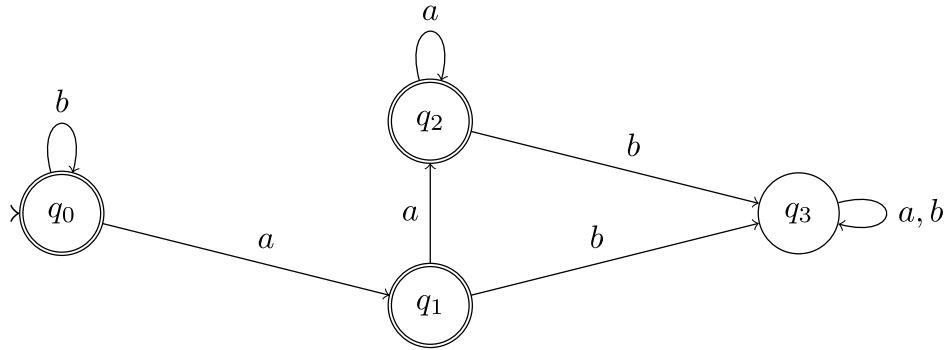
## Question 4

Convert the following two nondeterministic finite automata to equivalent deterministic finite automata.



## Question 5

Consider the following finite automaton  $A$  over the alphabet  $\Sigma = \{a, b, c\}$ .



- Is  $A$  deterministic? If not, convert  $A$  into a DFA.
- Is  $A$  minimal? If not, convert  $A$  into a minimal DFA.
- Convert  $A$  into a regular expression.

## Question 6

Prove by induction that  $n^3 + (n + 1)^3 + (n + 2)^3$  is divisible by 3 and  $n > 0$

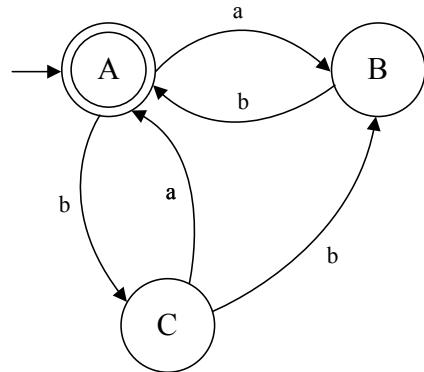
## Question 7

Construct a DFA equivalent to the NFA  $M = (\{a, b, c, d\}, \{0, 1\}, \delta, a, \{b, d\})$  where  $\delta$  is given below and informally describe the language it accepts.

| $\delta$ | 0           | 1          |
|----------|-------------|------------|
| $a$      | $\{b, d\}$  | $\{b\}$    |
| $b$      | $\{c\}$     | $\{b, c\}$ |
| $c$      | $\{d\}$     | $\{a\}$    |
| $d$      | $\emptyset$ | $\{a\}$    |

## Question 8

Find the regular expression for the following DFA.



## Question 9

Show that  $(\emptyset)^* = \epsilon$  for regular expression

## Question 10

Let  $\Sigma = \{a, b\}$  and let  $L_1$  be the language over  $\Sigma$  given by the regular expression  $(ab \cup ba)^*$ . Design a DFA for  $L_1$ .

Let  $\Sigma = \{a, b\}$  and let  $L_2 = \{w \in \Sigma^* \mid w \text{ does not contain } bbb \text{ as a substring}\}$ . Design a DFA for  $L_2$  and write a regular expression.

## Question 11

Consider the following statements about cardinality and functions:

- (a) Every subset of a countably infinite set is finite or countably infinite
- (b) There exists a bijection from  $\mathbb{N}$  to  $\mathbb{N} \times \mathbb{N}$
- (c) The set  $2^{\mathbb{N}}$  is countably infinite
- (d) If  $f : A \rightarrow B$  is one-to-one and  $|A| = |B|$ , then  $f$  is onto
- (e) The diagonalization principle can prove that some infinite sets have different cardinalities

Which statements are true? \_\_\_\_\_

## Question 12

Let  $A = \{a, b, c\}$  and  $R = \{(a, a), (a, b), (b, c), (c, a)\}$  be a relation on  $A$ .

a) Find the smallest reflexive relation  $R_1$  containing  $R$ .

b) Find the smallest reflexive and transitive relation  $R_2$  containing  $R$ .

c) Is  $R_2$  an equivalence relation? If not, what would you need to add to make it one?

d) For the relation  $R$ , find:

1. The row set of  $a$ :  $R_a = \{x \in A \mid (a, x) \in R\} = \underline{\hspace{2cm}}$

2. The diagonal set:  $D = \{x \in A \mid (x, x) \notin R\} = \underline{\hspace{2cm}}$

## Question 13

Construct DFAs for the following languages over  $\Sigma = \{0, 1\}$ :

a)  $L_1 = \{w \mid |w| \bmod 3 = 0\}$  (strings whose length is divisible by 3)

b)  $L_2 = \{w \mid w \text{ contains an even number of 1's}\}$

c)  $L_3 = \{w \mid w \text{ ends with 01}\}$

## Question 14

Prove the following set theory identity:  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$