CSS321: Theory of Computation
Final Mock Exam (Instructor I)

curated by The Peanuts

Conditions: Open Book

Directions:

1.
2.

This exam has 6 pages (including this page).

Please verify you have all pages. If you find an e-page, you may ignore
it.

External notes, books, or oracles are allowed. But your brain must
operate in offline mode.

Maintain calm. Panic transitions are not part of the allowed state
diagram.

If the exam starts feeling undecidable, breathe deeply and attempt a
smaller instance.

For solution, click here.

https://npwitk.com/mock-exam/solution/css321_fin_ans.pdf

Question 1

Let N be the set of natural numbers and E = {2n | n € N} be the set of even
natural numbers.

(a) Define a bijection f: N — E and prove that it is indeed a bijection by
showing it is both one-to-one and onto.

(b) Let P = N x N be the set of all ordered pairs of natural numbers. Prove
that P is countably infinite by defining an explicit bijection from N to
P.

Question 2

Consider the language L = {a*™®" | n € N} = {aa, aaaaa, aaaaaaaa, ...}
over the alphabet ¥ = {a}.

(a) Design a deterministic finite automaton (DFA) that accepts L. Draw
the state diagram clearly.

(b) Write a regular expression that describes the language L. Then, use
your DFA to show that the strings aa and aaaaa are accepted by tracing
the computation paths.

Question 3

Consider the context-free grammar G with the following production rules:

S —aSc| B
B — bBc | be

where S is the start symbol.

(a) Describe the language L(G) in set notation. What patterns do the
strings in this language follow?

(b) Give a leftmost derivation for the string aabbcece.

(c) Draw the parse tree for the string aabbccecc.

Question 4

Consider a simplified context-free grammar G for variable declarations in a
programming language:

D—-TV;
T — int | bool | string
V —id|id, V

where D is the start symbol representing a declaration, 7" represents a type,
and V represents a list of variable identifiers.

(a) Draw a parse tree for the declaration int x, y, z;

(b) Convert the grammar G into Chomsky Normal Form (CNF). You may
introduce new non-terminal symbols as needed. Show all steps of your
conversion.

Question 5

Design a one-tape Turing machine M that reverses a string over the alphabet
{a,b}. For example:

e Input: >Uabb should produce Output: >Lbba

e Input: >Uaab should produce Output: rlbaa

(a) Describe your algorithm in pseudocode or clear English explanation.
Explain the strategy for reversing the string on a single tape.

(b) Draw the state diagram of your Turing machine or describe the transi-
tions formally. You may use helper machines or mnemonics if needed.

(c¢) Hlustrate how your Turing machine works by showing the computation
sequence for the input string ab, starting from >Uab.

CSS321: Theory of Computation
Final Mock Exam (Instructor II)

curated by The Peanuts

Conditions: Open Book
Directions:

1. This exam has 6 pages (including this page).

2. Please verify you have all pages. If you find an e-page, you may ignore
it.
3. External notes, books, or oracles are allowed. But your brain must

operate in offline mode.

4. Maintain calm. Panic transitions are not part of the allowed state
diagram.

5. If the exam starts feeling undecidable, breathe deeply and attempt a
smaller instance.

Question 1

Consider the language L = {a"'b"c"*! | n € N,n > 1} over the alphabet
Y. ={a,b,c}.

(a) Design a one-tape Turing machine M’ that decides L. You may assume
the existence of:

e A Turing machine M that decides {a"b"c" | n € N}

e A Turing machine S_, that shifts an input string one step to the
right
(ie., plw Fg pUUwW)

Describe clearly how you compose these machines to decide L.

(b) IHlustrate how your machine M’ works on the input string abbcc by
showing the key configurations during the computation.

Question 2
Design a one-tape Turing machine M that accepts the language
L={a™b"c™ | m,n > 1}

(a) Explain your algorithm clearly. How do you verify that the number of
¢’s is exactly m x n? Describe the strategy step-by-step.

(b) Draw the state diagram of your Turing machine or provide a formal
description. You may use the mnemonics from the following table or
define your own helper machines:

Mnemonic | Description
L Move cursor to left
R Move cursor to right
L, Scan left until LI is found
R Scan right until L is found
St Shift entire tape to left
Sk Shift entire tape to right

Question 3

Consider the context-free grammar G with productions:

S — aSbScS | aSSbS | baSS
S — beSaS | ¢SaSh | ¢bSaS | e

(a) Does this grammar generate the language
L=A{w e {a,b,c}" | ny(w) =np(w) = n.(w)}
where n,(w) denotes the number of occurrences of symbol x in string
w?
Prove your answer by either:
e Showing by induction that every string generated by G has equal

numbers of a’s, b’s, and ¢’s, or

e Providing a counterexample that shows a string in L(G) that is
not in L, or vice versa.

(b) Give leftmost derivations for the strings abc and aabbee using this
grammar.

Question 4

Consider the following grammar for list structures:

S —al|NT)
T—-T,5|S

where S is the start symbol, a represents an atom, and A(...) represents a
list structure.

(a) Find the leftmost derivation for the string A((A(a,a), A(a)), a).

(b) Find the rightmost derivation for the same string.

(c) Draw the parse tree for the string A((A(a,a), A(a)),a).

Question 5

Let A be the language containing only the single string s, where

0 if life never will be found on Mars
1 if life will be found on Mars someday

For the purposes of this problem, assume that the question of whether life
will be found on Mars has an unambiguous YES or NO answer.

(a) Is A decidable? Provide a rigorous argument for your answer. Consider
what it means for a language to be decidable and whether we can
construct a Turing machine that decides A.

(b) Is A Turing-recognizable? Is the complement A Turing-recognizable?
Explain your reasoning carefully. What does this tell us about the
relationship between decidability and recognizability?

