
SetOptions[EvaluationNotebook[], ShowCellLabel → False];

SetOptions[{Plot, Plot3D, ContourPlot, DensityPlot, ParametricPlot, ParametricPlot3D, ListPlot, ListLinePlot,
VectorPlot, VectorPlot3D, StreamPlot, RevolutionPlot3D, ContourPlot3D, Graphics, Graphics3D},

BaseStyle → {16, FontFamily → "Times"}, ImageSize → Medium];

(********************************)(* PROBLEM SET 1 *)(********************************)

(*

Problem 1.1: Create the following primitive objects:
a) A sphere with radius 0.5 at position {1, 1, 1} (Red Color)
b) A cylinder with radius 0.2 and height 2, positioned along the z-axis (Blue Color)
c) A cube with side length 0.8 centered at the origin (Green Color)

Then rotate the entire set around the y-axis
*)

(* Create basic primitives *)

(* Combine objects *)

compoundObject1 = {sphere1, cylinder1, cube1};

(* Check *)

(* Rotation function around y-axis using GeometricTransformation *)

(* Graphics function to display the rotated object *)

(* Manipulate to animate the rotation 0-2π *)

Manipulate[displayRotated1[a], {a, 0, 2* Pi}]

a

(*

Problem 1.2: Create a dynamic scene with:
a) A table of 8 arrows pointing outward from origin (with random color)
b) A torus at the origin
c) Animate to rotate the arrows around the x-axis while keeping the torus static (don't move)

*)

(* Create table *)

(* Create 8 arrows pointing outward from origin *)

(* Rotation function for just the arrows *)

(* Manipulate to animate the rotation *)

2 Set1.nb

Manipulate[displayScene1[a], {a, 0, 2 Pi}]

a

(*

Problem 1.3: Load an external STL file (CubCr.stl)
a) Import the STL file and display it in 3D space
b) Create a function to rotate the model around an anchor point {5, 0, 0}
c) Implement a geometric transformation that combines translation and rotation
d) Visualize the rotation with a yellow sphere (radius = 1) showing the anchor point
e) Create an animation that rotates the model around the x-axis

*)

SetDirectory["

"];

(* Import the STL file as polygon objects *)

(* Check *)

Set1.nb 3

Graphics3D[cube]

Paround1 = {5, 0, 0};

RR1 = {0, 0, 5.5};

(* Create a function that applies geometric transformations to rotate the object *)

(* Create a visualization function that displays both rotated object *)

(* Manipulate *)

4 Set1.nb

Manipulate[displayAnchoredRotation[a], {a, 0, 2* Pi}]

a

Set1.nb 5

